
CGDI - Project Report

Remi Coudert and Loïs Paulin

May 2017

Abstract

We present here our work on the Computer Graphics and Digital
Images project which consisted in the creation of an image recognition
system learning a set of 70 classes from an database of 15 pictures per
class. Our classifier is a KNN algorithm working on features derived
from Hu moments. We obtained satisfying results on our test protocol
on close shapes for the human eye such some devices class, bricks and
some simple shapes such as children. But we had big drawbacks on
classes with more details such as guitars, keys and butterflies.

1



CGDI - Project Report

Contents

1 Introduction 3

2 Chosen Features 3

3 unimplemented features 5

4 C++ Implementation 5

5 Experimental Protocol and Results 6

6 Conclusion 7

2



CGDI - Project Report

1 Introduction

Computer Vision is a very challenging part of image analysis in which
many problems have to be solved in order to determine what is the image
representing. In real life situations, the first problem faced is to be able to
determine what is part of the background and is part of the object or what are
the interest points in the picture. In this project, we consider that this part is
already done and that all we have to do left is the analysis of the object shape
in order to classify it.

The main challenge in this project is to be able to characterise objects
which can come in any rotation or size, or even with some noise on it. This
require us to find features which are scale and rotate invariant, and which still
allow us to discriminate close classes such all the round and square shaped
classes and to detect the obvious characteristics of classes such as the bugs
antenna and legs.

As we present it in Section 2 our approach was to use KNN[2] a classifier
that compares the test image to all the training samples and select the most
frequent class in the K Nearest Neighbours. We decided to use Hu moments
[3] and the ratio between the area and the square of the perimeter of the shape
as features. All those features respect the condition of being scale and rotate
invariant.

2 Chosen Features

2.1 Hu Moments

Hu moments[3] are a set of 7 image features derived from image moments.

if f : R2 → R is the (continuous) function mapping pixel positions to their
value, an image moment is defined as

Mpq =

∫
xpyqf(x, y) dxdy

and for the discrete verrsion, where I is the discrete version of f (i.e. an array
of pixel values)

Mij =
∑
x

∑
y

xiyjI(x, y)

Let’s define (x, y) to be the centroid as follows :

x =
M10

M00

y =
M01

M00

3



CGDI - Project Report

and define (only the discrete case)

µpq =
∑

x

∑
y(x− x)p(y − y)qf(x, y))

µpq is translation invariant

from here let

ηij =
µij

µ
(1+ i+j

2
)

00

ηij is scale (and translation) invariant.

Hu moments are then defines as mathematical combinations of different nij.

For example the first Hu moment is

I1 = η20 + η02

All the hu moments are rotation (and scale, translation) invariants.

2.2 Area Over Squared Perimeter

2.2.1 Feature Properties

With this feature, we tried to get a measure of how folded the contour of
our picture was. Since for a given area, the higher the perimeter is, the more
folded our contour is.

In order to compute this feature, we implemented estimators for both area
and perimeter which are convergent. And thus are rotate invariant with a
sufficient sampling precision. Moreover, by definition, when scaling by a factor
n, the area is multiplied by n2 and the perimeter by n. Thus we have:

A(S(X,n))

P (S(X,n))2
=

A(X) ∗ n2

P (X)2 ∗ n2
=

A(X)

P (X)2

Thus this feature is scale invariant.

4



CGDI - Project Report

2.2.2 Implementation Details

Our estimator for the area is simply the number of pixel in our shape but
our perimeter estimator involves more complex objects such as DSS.

Data: S : Shape
Result: P : Perimeter
DSS_Set = DSS_Cover(S);
P = 0;
forall d in DSS_Set do

P += Distance(d.begin, d.end);
end

Algorithm 1: Perimeter Estimator

We used the DSS structure contained in the DGtal librairy to implement
the DSS_Cover function which computes a set of non extendable DSSs which
covers the whole contour of our shape.

3 unimplemented features

3.1 SIFT descriptor

The SIFT[4] (Scale-invariant Feature Transform) algorithm, is a very fa-
mous algorithm used in shape indexing. This algorithm computes ’SIFT de-
scriptors’ that can be seen as local characterisation of the images.

We could add the SIFT image descriptors to our feature vectors to have
more precise image descriptions ans thus a better classification.

3.2 SURF descriptor

The SURF[1] (Speeded Up Robust Features) algorithm was presented (in
2006) as an improvement of the SIFT algorithm in terms of computational
speed and robustness.

As for SIFT, we could add these image descriptors in our features vectors
to get better results.

4 C++ Implementation

4.1 General Layout

We defined the following classes :

5



CGDI - Project Report

• Image : This is the main class, representing an image where we compute
features and read images from files.

• Pixel : This class simply represents a pixel and is used for Image

• ImageClass : This class represent an image class, it holds the value of
its name and its feature vector. This class overrides the ’<’ operator for
its use in std::sort, an imageClass is ’less than’ another if its distance
to the current evaluating class is smaller.

• KNearestNeighbours : This class holds the value of k (3 by default)
and the functions used to compute the KNN algorithm.

The feature vectors are computed insinde ImageClass’s constructor. We
then use the KNN[2] algorithm.

For simplicity and speed, we already computed feature vectors, they are
stored in the file ’classes.csv’.

4.2 Implemented functions unused

Here’s a list of function we implemented but that are not used in the current
code :

• closing : We implemented the closing algorithm seen in class to be able
to correctly classify some images such as the cup (which can have two
connected components). We dropped this functionality because it did not
change much the result while beging computationaly intensive. Perhaps
with some more experimentation with the parameters of the closing (such
as the size of the closing element) we could have done something better.

• standardization : We implemented this function as an alternative to
normalization, it worked well with only hu moments as features. The
implementation consists in finding the mean µ and variance σ2 of the
vector and for each x in the vector do x = (x−µ)

σ2

5 Experimental Protocol and Results

The given database contains 70 different classes, each holding 15 different
examples. We chose to learn on the first 14 and test on the 15th one for each
class. We then simply ran our knn algorithm on each 15th class to see whether
it was correctly classified, each time changing some parameters. The 3 different
parameters were

1. k as the argument for the knn algorithm

6



CGDI - Project Report

Figure 1: Correct classification frequency against different testing parameters

2. The choice of Euclidian (L2 norm) or Manhattan (L1 norm) distance

3. The use (or not) of the last feature (i.e. use only the 7 hu moments or
the full 8 moments)

It yielded the results shown in Figure 1.

These results can be seen in the files l1, 2_k1, 3_7, 8f along with knn votes
and classification result for each image.

6 Conclusion

Our results show that our choice our features, even if not complete, is some-
what relevant. We were able to correctly classify about 60% of the images we
tested, some classes being extremely well classified some being quite badly
classified.

Finding good image features is a difficult task and depends a lot on the
data. Finding and using the right classifier and use it well is a challenge as

7



CGDI - Project Report

well. We chose to use KNN for its simplicity but we are aware of its limitations,
such as its high sensitivity to data range and dimension of the space and its
relative slowness. For instance we could have used a deep learning classifier or
a decision tree classifier, which would most certainly yields better results, but
with the drawback of implementation complexity.

Data preprocessing is an aspect that could be rethought as well, a lot of
choices are possible such as smoothing input images or using different kinds of
data normalisation.

Cross-validation could have been beneficial as well. Indeed, if we had more
data, we could have split it in 3 sets (training, testing, and validation) to be
able to learn parameters such as the best value of k for KNN or to learn a good
metric to use since l1 and l2 norms might not be optimal distance functions.
Dimensionality reduction could have been done as well.

To sum up, our implementation permits to decently classify images even
though we could have had a more complete recognition pipeline.

References

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up
robust features”. In: Computer vision–ECCV 2006 (2006), pp. 404–417.

[2] Thomas Cover and Peter Hart. “Nearest neighbor pattern classification”.
In: IEEE transactions on information theory 13.1 (1967), pp. 21–27.

[3] Ming-Kuei Hu. “Visual pattern recognition by moment invariants”. In:
IRE transactions on information theory 8.2 (1962), pp. 179–187.

[4] D.G. Lowe. Method and apparatus for identifying scale invariant features
in an image and use of same for locating an object in an image. US
Patent 6,711,293. Mar. 2004. url: http://www.google.fr/patents/
US6711293.

8

http://www.google.fr/patents/US6711293
http://www.google.fr/patents/US6711293

	Introduction
	Chosen Features
	unimplemented features
	C++ Implementation
	Experimental Protocol and Results
	Conclusion

