DSE Project Writup - RASP: Rocky Arena of Scissors and Papers

Leonardo Aoun Lucas Gauchoux Rémi Coudert

February 7, 2020

1 Introduction

For this project, we chose to implement the infamous game of Rock Paper Scissors Battle with multiple players.
It is a simple enough game to not have to deal with an overly complicated game logic while still having to
implement interesting decentralized functionalities.

The basis for this game for n players is as follows : each player is able to send a rumour containing a
proposition of bet and a hidden move, and wait for an answer from another player for this bet and their own
hidden shape. Players can either create open challenges or challenge specific adversaries.

This will create a game of n players with asynchronous duels involving (fake) money and (safe) betting. Thus
we implemented a consensus to keep track of duel results and players’ money as well as some cryptography to
implement the commit protocol to ensure fairness between players.

The interesting parts for this project are the commit process with which we ensure that no one can cheat
and steal money and the consensus protocol (using a blockchain) to keep track of balances and past matches.

2 Related Works / Tools we used

2.1 Decentralized Bets

There is already a few games running on some Blockchains such as the Ethereum. Notably [cryptokitties or
lesser known games like |[Virtue Poker| as well as implementations of the lottery. In this project we are mainly
interested in the betting functionality. This functionality is used in many games such as Black-Jack. More pre-
cisely we implemented a "fair" betting system. Building what is so called a fair system is the main motivation of
implementing a betting functionality on a decentralized system rather than on a client-server traditional system.

A fair game is a game in which players cannot cheat and is fair in its rules and rewards. With our peerster
implementation we allow user-to-user bet and ensure that all bets taken are honored by using the block chain to
register all transactions. A Proof-of-Concept(PoC) has been realized by |betdemocracy.org. As explained in this
PoC, by removing the bookmaker, you don’t play against the casino or the bank anymore but directly against
other user. This enables you to set your own odds and to propose this bet to others users in the network. This
makes makes it very convenient for our implementation because in naturally includes the duel idea of a Rock,
Paper,Scissor game. The user that will challenge another player can set their own price and adversaries are free
to take the bet/risk or not. As soon as a challenge is accepted the block chain is used to register the bets and
no player withdrawal is possible.

2.2 Cryptographic Tools

Since bets and plays are user-to-user we don’t have any trusted referee in the middle that can states which peers
wins. We therefore need cryptographic tools such as private and public key to ensure we are indeed playing
with the peer that started the challenge, known as digital signature and hash function to ensures integrity of the
money bet for example. Moreover when playing with another peer we need a way to ensure to the challenger
that we have choose a move(rock, paper or scissor), that cannot be changed, without revealing what move we
choose. Otherwise winning is trivial for the challenger. For this particular aspect of the project see sections|2.3

and [6

2.2.1 Hash Functions

As stated before we will use hash function to ensure integrity of the messages sent. Hash functions are also
used by our game protocol to publish a transaction without revelling the move we choose. In order to ensure
integrity the known method is to send the message plain text along with the hash of this plain text. Upon

https://www.cryptokitties.co
https://virtue.poker
betdemocracy.org

receiving such a message the receiver can hash the plain text and verify that it correspond to the hash send
along with the message. We will also use hash function to hide some data that is transmitted. This is part of
the implementation of the commitment scheme explained below in the Fairness Ensurance with implementation
details in 3.2. The way hash will be used in this part is by hashing the move choose by the attacker along
with a nonce. Without the nonce the challenger would just have to hash the 3 possible move to find out the
move played by the other peers. This nonce allows the action to remain secret until the nonce is revealed. This
random number will be revealed only when the challenger chooses his move.

2.2.2 Private/Public key

We will use private and public key to ensure that we are communicating/playing with the person we agreed
to. This process is known as digital signature. Digital signature is a mathematical scheme for verifying the
authenticity of digital messages or documents. Each node will have at their disposal pair of public and private
key. The public key of a peerster will be by definition public and available on the block chain when it joins
the network. Each time node A wants to ensure node B that the message originates from him, it will encrypt
the message to be send with it private key. Upon receiving the message, node B will be able to verify that it
originates from A by decrypting it with A’s public key.

2.3 Commitment Schemes

To ensure fairness we will use a commitment scheme. A commitment scheme is a pair of functions Commit and
Open, that have hiding and binding properties such that, with a random R.

Commit(X,R) = (¢, k)
Open(c,k) =X

The hiding property means that one cannot recover X from c and the binding property ensure that it’s not
possible to generate k', ¢’ such that Open(c,k) = Open(c,k’). It should not be possible for an adversary to
recover X from c only.

Put simply, a commitment scheme permits to commit a value that cannot be opened by a peer, and cannot
be changed, thus we will be able to exchange our moves without being able to see the opponent’s move before
sending yours, and without the possibility to change your mind.

3 Ensuring Fairness

The main prerequisite for a game of Rock Paper Scissors is that the players should play synchronously and
simultaneously, to ensure fairness i.e. to be sure that no player can cheat during a round by choosing a move
according to the choice of the adversary.

In the case of RASP, we cannot make players show their shape simultaneously. The obvious choice is to use
some cryptographic primitive such as public key cryptography and/or a commitment scheme.

To do so, and following section we chose to use the SH A256 hash function. Our commit protocol is (in
theory) as follows :
Commit(Move, Nonce) = (Sig, Nonce) = (SH A256(Move, Nonce), Nonce)
Open(Sig, Nonce) = Find the move that corresponds to the pair (Sig, Nonce)

In reality, with our implementation, since messages are encrypted we can send the move to the adversary
with the nonce for them to simply check with the signature (see end of section @ Moreover, in the actual
implementation, we added UIDs (unique IDs) to matches to prevent replay attacks.

This makes us able to send move that the sender cannot change (biding), and the receiver cannot open
before they are supposed to (hiding).

4 Communication

In order to better understand the next section, we will introduce the two types of messages:

e Rasp Messages which are sent between Alice and Bob privately so gladiators in the Rocky Arena of Scissors
and Papers don’t accidentally hustle together. They include a game action or a challenge request or a
challenge response. They will piggyback on the underlying Peerster Private Messages (or Rumors if the
challenge request is open).

e Transactions which will be processed by the blockchain that can only include a game action, no need to
spam everyone with Bob’s small bets. They will use the same logic as Homework 3 by replacing the File
struct by a GameAction. These GameActions will be aggregated into a ledger that contains for each head,
for each player, their balance, and for each game, its state on the blockchain.

Map: (Head) -> (Map: Players -> Balance, Map: Identifier -> State)

5 Processing of the Blockchain into a Ledger

The introduced commitment scheme would be useless if Alice, the challenge proposer and winner, cannot let
everyone know she beat Bob. And she cannot just send a rasp message with the results to everyone because
Bob is a bad loser, and Remi, the Referee would not accept to see Bob cry so he’d change the results when
Alice is not paying attention.

This is why we need a common immutable ledger: the blockchain we implemented in HW3.

The easiest naive solution would be to just broadcast the rasp messages contents using Transactions since
the signatures ensure authentication. However, as we said, Bob is a sore loser, the next time they enter the
Rocky Arena of Scissors and Papers, he proposes a challenge to Alice but when she sends him her Rasp Defence
he realizes her move was stronger and does not send a reveal so no one knows he had lost. We thus decided to
consider the defender the winner until the reveal from the attacker. So when the attacker sends an attack, they
hold some money for the bet, and if a defender replies, they would get it until the winning reveals takes back
twice that money from the defender and grants it to the attacker.

The next round, Alice sends a Rasp Request trying to make amends, but Bob is so angry that he accepts
the challenge, but does not send a Rasp Defence when Alice sends him the attack. He thinks he’s being cheeky
by making Alice hold a lot of money for nothing. And this is why Remi the Referee gave the ability for the
attacker to cancel a game. This way, a justified and signed Cancel Transaction can help Alice avoid such pitiful
bad players, or dropped packets.

Still trying to cheat his way to the Viridian Gym, Bob waits for an attack by Alice, defends with a Rock
and waits for her Reveal Transaction. As soon as he sees that her hidden move was a Paper he publishes a
Defence Transaction saying he had Scissors. Now it’s just a game of popularity, but as everyone knows Bob is a
sore loser and aggressive, they have no choice but to trust his word and Transaction against the Rasp Defence
he had sent to Alice, even if she shows them the Signature. After all, it is only in the Blockchain that we
trust. So now, when Alice wants to send a reveal, she should wait for any defence, the Rasp Defence or the De-
fence Transaction and include its signature in the Reveal Transaction, proving that Bob had sent her that move.

Hence, we now have the following Storyboard when any peer, like Remi the Referee, is processing the blocks
into a ledger:

1. When seeing Alice’s attack, he deducts <bet> Etherasps from Alice’s balance. But first, he checks that
Alice’s signature is good and that both players have enough Etherasps in the ledger.

2. At Bob’s TxDefence, he checks Bob’s signature and that there exists indeed a match with the corresponding
identifier coming from Alice. If the attacker was not Alice Remi discards the Transaction, else keeps it in
the pending pool until more information arrives.

3. When he sees a TxReveal, again, he checks signature and checks that both the Attack and Defence are
either in the ledger or also in the pending transaction pool. If Alice had lost, nothing happens but if she
had won, he deducts <2 * bet> Etherasps from Bob and grants them to Alice. At this point, Bob could
be in deep trouble and go into a negative balance. At this point he is considered broke and no honest
player should accept any action from Bob. Some reveals or pending games could still be pending and he’ll
get out of this situation.

4. TxCancel: He checks for the existence of a corresponding attack or keeps it in the pending transactions,
discarding it if the attack wasn’t by Alice. He checks signatures. This transaction would grant Alice back
her <bet> Etherasps and will refuse Defences or Reveals once the block is mined. However, if there is
a TxDefence or some TxDefence arrives before the TxCancel is selected to be mined, the defence takes
precedence. Preventing trollers from sending attacks and cancels at the same time.

5. A special TxSpawn means a player joined the network, this gives the included Public Key and Gladiator
name pair a starting amount of Etheraps.

When a new fork becomes the longer chain, we don’t want Alice to lose all the games she had won, so when
switching to a new head, all the missing transactions are published again and added to the pending transactions
if they don’t conflict with the current ledger.

6 Cryptographic primitives and distributing secrets

To use the functionalities above we need a public key encryption scheme, a hash function and a way to distribute
public keys to the peers as a way to sign the transactions.

We first need a way to sign messages. For this we chose to use public key cryptography and the RSA
protocol, to sign messages with players’ private keys such that receiving peers can verify that it comes from the
one it’s supposed to come from using public keys (authenticity).

Let K be a public key, and k a private key and let

OK(.), Decy,

be the RSA encryption with the public key K and the RSA decryption with the private key k respectively.
In this case, C'kx creates signatures that let us ensure authentication and integrity. Authentication comes from
the fact that any peer receiving Y = C'x (X) can compute X = Decy(Ck (X)) and ensure the message X comes
from the owner of the public key K. Integrity can be preserved by a good choice of what’s encrypted inside
messages to ensure no one can modify the important parts of a message without habing to modify the signature
as well (which should be hard).

To implement this, all we need is to generate pairs of private and public keys for each peer in the network
and each peer will need to broadcast their public keys. For this, we need to check the blockchain to find the
public key that signed the arrival of a given peer, and store it locally.

We used golang’s crypto package, that already implements hash functions, RSA and key generation.

It is important to note that Go encryption need messages to be of fixed length hence hashed, i.e. Ck(X) is
in reality Cx (H(X)). This is important to have in mind for section

7 Gaming protocol and implementation

Figure 1: The RASP Protocol

>
|

Challenge : (ID, B, Sigchal = Cr,(ID, B))
Response : (ID, Sigres = Cx,(ID)) U

Attack : (ID, B, Siga = Cix,(ID, B, Pad), H = Cx, (ID, M, N))
Defense : (ID, M, Sigges = Cr,(ID, M)) 'M

The main goal of the system is for people to be able to play Rock, Paper, Scissors with different players in
the network such that they are able to bet money on each play.

The history of the win/loss transactions and the overall status of every player jackpot is ensured by the
blockchain. The blockchain ensures that each players that bets money honors its commitment.

The whole protocol is depicted in Figure []

Notations

In the following, we’ll refer to A (Alice) the challenger and B (Bob) the Defender.

A given match in the game, is a round of Rock, Paper, Scissors played between A and B for some given
amount of money (the bet).

We will refer as C'k(.) for the creation of a signature, i.e. an RSA encryption with the public key K of the
relevant player.

We'll refer as M for a move, and IV for a nonce.

General overview of a single match
A match consists in 5 distinct parts :

1. A challenge sent by A

2. An answer to the challenge by B

3. The move played by A, signed

4. The move played by B, signed

5. The reveal, and the resolution of the winner (or draw)

The first two parts are used to create a match, and can be thought as something similar to a 7'C'P handshake.
The 3 later are the actual match, with the exchange of moves and the resolution of the winner if any.

A match is uniquely identified by its UID, and it can be cancelled. In the description of the different
messages, we’ll omit the destination and origin since it is not of interest of the actual protocol, but these fiels
are used in the implementation.

Signatures

In most of messages, we use signatures to ensure authentication and integrity. Since signatures are RSA
encryptions with public keys, it ensures authentication, and integrity comes from the way each message is
designed (see below).

In the subsequent section, we’ll only talk about integrity since authentication is always ensured the same
way (see the section |§| on cryptography).

7.1 The Challenge

When A first decides to create a match, they decide on a bet amount B and a move M. There are two
possibilities for a challenge :

e Open challenges: You send a challenge with your bet and it can be accepted by any peer that receive the
message. Open challenges are propagated like rumours and the first node that reply will get the challenge.

e Omne-to-Ones: You can also challenge a known contact to a private battle.
Hence, a challenge has three components :
1. The match unique identifier 1D
2. The Bet B for the match
3. The signature of the challenge identifier and the bet Sig(chai pet)
With
Sigchar = Cx(ID, B)

The signature ensures integrity since an attacker cannot change the message without having to change the
signature.

7.2 The Challenge Response

If B decides to answer to A’s challenge (whether open or not), they send a response consisting of two components

1. The match unique identifier 1D

2. The response signature Sig,es
With

Sigres = CK(ID)

As for the Challenge, this signature ensure integrity.

7.3 The Attack

Once A and B agreed on playing a match against each other, and agreed on a bet amount B, A can send their
actual move. This Attack message consists in four components :

1. The match unique identifier 1D
2. The Bet B for the match

3. The bet signature Sigq:x

4. The hidden move H

With
Sigatk = CK(ID, B7 Pad)
and

H = Cy(ID,M,N)

Sigatr ensures integrity as before, and the pad (random, hidden and unique to a player) is used to prevent
replay attacks (since the challenge signature would be identical otherwise).

H is the commited move, A won’t be able to change it and B cannot verify it without having received A’s
move and nonce.

7.4 The Defense

B’s defense has three components :
1. The match unique identifier 1D
2. B’s move (in clear)
3. the move signature Sigqe
With

Sigdef = CK(ID,M)

Once again, the signature ensure integrity of B’s move such that an attacker cannot change the said move
without changing the signature.

7.5 The Cancel

As mentioned in the Blockchain explanation, Alice can send a Cancel if no one dares to challenge her unques-
tionable might. Or if some trickster like Bob tries answers her call but don’t send any defence. She thus sends
the struct:

1. The match unique identifier ID

2. The challenge signature Sigcpq;, this time without the bet to avoid a replay attack.

8

Possible improvements, assumptions made and challenges encoun-
tered

There are several things to note :

Players’ balances can go (in a controlled way) in the negative, due to the possibility to accept multiple
challenges in one block. This is intentional: We prevent someone from betting something larger than their
balance, but we let them accept more challenges as long as they are in the same block. To allow some
way for players to lose.

We assumed peers to not be too malicious, e.g. they may want to try to find out opponents moves
(hence the cryptography), but peers shouldn’t try too much attacks such as denial of service or malicious
messages. The only attacks they could do would be to change their own source code, but we made sure
that following a different commitment scheme would result in either cancelled games or

We also assumed that it is not our job to fix the issues with the Blockchain from HW3 (missing blocks when
joining the network). This Rocky Arena of Scissors and Papers would run on stable Peerster blockchains
just like Cryptokitties runs on the Ethereum network.

The Peerster network must have a reasonable shape, no weak or missing links that would result in having
two very different forks.

We made sure that having malicious nodes would have the same effect as a a node that drops all packets.

UIDs are supposedly unique if the system isn’t used for too long, they are drawn independently at random
in the range [0,2% — 1].

The processing of the blockchain is surely not optimal, sometimes we retraverse the whole chain and don’t
cache intermediate ledgers. We wanted to focus on having a good game and not focus on the architecture,
so you cannot afford to take this code and host it on a Docker Swarm on AWS to run for a full year.

To avoid a few potential issues coming from the Rewind problem: Imagine Alice cancels a challenge on
the current HEAD chain, her TxCancel is there. Then there is a rewind and in the newer fork, Bob had
sent his TxDefence. We made it such that anytime she sees a TxDefence concerning her and there is no
TxReveal covering it, she will publish again its correspondent TxReveal.

	Introduction
	Related Works / Tools we used
	Decentralized Bets
	Cryptographic Tools
	Hash Functions
	Private/Public key

	Commitment Schemes

	Ensuring Fairness
	Communication
	Processing of the Blockchain into a Ledger
	Cryptographic primitives and distributing secrets
	Gaming protocol and implementation
	The Challenge
	The Challenge Response
	The Attack
	The Defense
	The Cancel

	Possible improvements, assumptions made and challenges encountered

